

Enantioselective Synthesis of (*R*)- and (*S*)-α-Alkylcysteines via Phase-Transfer Catalytic Alkylation

Taek-Soo Kim,[†] Yeon-Ju Lee,[†] Byeong-Seon Jeong,[‡] Hyeung-geun Park,^{*,†} and Sang-sup Jew^{*,†}

Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Korea, and College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Korea

hgpk@plaza.snu.ac.kr

Received May 31, 2006

We reported efficient enantioselective synthetic methodologies for (*R*)- α -alkylcysteines and (*S*)- α -alkylcysteines. The phase-transfer catalytic alkylation of 2-phenyl-2-thiazoline-4-carboxylic acid *tert*-butyl ester and 2-*o*-biphenyl-2-thiazoline-4-carboxylic acid *tert*-butyl ester, in the presence of chiral catalysts (**1** or **2**), gave the corresponding alkylated products, which could be hydrolyzed to provide (*R*)- α alkylcysteines (67–>99% ee) and (*S*)- α -alkylcysteines (66– 88% ee), respectively.

As one of the α,α -dialkyl amino acids, α -alkylcysteines are valuable building blocks for the biologically active peptidomimetics, since they can not only resist enzymatic degradation but also form the stabilized, preferred conformations of the peptide backbone.¹ In addition, they are able to form a further constrained cyclic peptide structure by disulfide bond formation. Several natural products involving α -alkylcysteine moieties exist, such as tantazoles,² mirabazoles,³ and thiangazole,⁴ which exhibit antitumor and anti-HIV-1 activities.

A number of enantioselective synthetic methods for α -alkylcysteines have been reported so far. Their main synthetic strategies can be classified as follows: (1) thiomethylation of a bislactim ether prepared from valine as a chiral auxiliary,⁵ (2) nucleophilic ring opening of a chiral aziridine or chiral β -lactone with thiolates,⁶ (3) self-reproduction of chirality using oxazolidinone or thiazolidinone derivatives,⁷ and (4) enzymatic desymmetrization of monomethyl dimethylmalonate.⁸ However, since most of the reported methods employed chiral starting materials or chiral auxiliaries, their applications to industrial processes for the mass production of chiral α -alkylcysteines might not be straightforward. In this paper, we would like to report new and efficient synthetic methods for (*R*)- α -alkylcysteines and (*S*)- α -alkylcysteines via phase-transfer catalytic α -alkylation of thiazoline-4-carboxylates, which could be applied to industrial processes.

Quite recently, we reported a new synthetic method for (\pm) - α -alkylserines by the selective α -alkylation of *tert*-butyl 2-phenyl-2-oxazoline-4-carboxylate in phase-transfer catalytic conditions.⁹ As successive studies, the enantioselective versions using chiral phase-transfer catalysts were also disclosed (Scheme 1).¹⁰ In addition, we reported a chiral auxiliary method via phasetransfer catalytic alkylation of the oxazoline-4-carboxylate, possessing camphorsultam as a chiral auxiliary (Scheme 1).¹¹ These studies all showed that the phase-transfer catalytic conditions are very efficient for the α -alkylation of the oxazoline-4-carboxylate system. Based on our previous results, we attempted to apply the phase-transfer catalytic alkylation conditions to 2-aryl-2-thiazoline-4-carboxylate esters (**8**) for the enantioselective synthesis of chiral α -alkylcysteines (Scheme 2).

First, we prepared the thiazoline-4-carboxylate (**8a**, **8b**). The substrate **8a** was easily prepared by the coupling of ethyl benzimidate and cysteine methyl ester, followed by transesterification¹² using AlMe₃ in 80% yield from **11** (Scheme 3).

The substrate **8b** was prepared from 2-biphenylcarboxylic acid (**13**) in three steps. The coupling of **13** and **14**, followed by cyclization¹³ in the presence of triphenylphosphine oxide and trifluoromethanesulfonic anhydride, gave the thiazoline methyl ester **16**, which was converted to the corresponding *tert*-butyl ester **8b** by transesterification using AlMe₃ in 81% yield from **14** (Scheme 4).

For the phase-transfer catalytic alkylation, we adapted our previous reaction conditions.¹⁰ The phase-transfer catalytic

(10) (a) Jew, S.-s.; Lee, Y.-J.; Lee, J.; Kang, M. J.; Jeong, B.-S.; Lee, J.-H.; Yoo, M.-S.; Kim, M.-J.; Choi, S.-h.; Ku, J.-M.; Park, H.-g. *Angew. Chem., Int. Ed.* **2004**, *43*, 2382. (b) Lee, Y.-j.; Lee, J.; Kim, M.-j.; Kim, T.-S.; Park, H.-g.; Jew, S.-s. Org. Lett. **2005**, *7*, 1557.

(11) Lee, J.; Lee, Y.-I.; Kang, M. J.; Lee, Y.-j.; Jeong, B.-S.; Lee, J. H.; Kim, M.-j.; Choi, J.-y.; Ku, J.-M.; Park, H.-g.; Jew, S.-s. J. Org. Chem. **2005**, 70, 4158.

(12) Oppolzer, W.; Moretti, R.; Thomi, S. Tetrahedron Lett. 1989, 30, 6009.

(13) You, S.-L.; Razavi, H.; Kelly, J. W. Angew. Chem., Int. Ed. 2003, 42, 83.

10.1021/jo061107t CCC: \$33.50 © 2006 American Chemical Society Published on Web 09/15/2006

^{*} To whom correspondence should be addressed. Tel: 82-2-880-7871, Fax: 82-2-872-9129.

[†] Seoul National University.

[‡] Yeungnam University.

^{(1) (}a) Ma, J. S. Chim. OGGI 2003, 21, 65-68. (b) Goodman, M.; Ro,
S. In Burger's Medicinal Chemistry and Drug Discovery, 5th ed.; Wolff,
M. E., Ed.; John Wiley & Sons: 1995; Vol. 1, Chapter 20, pp 803-861.

 ⁽²⁾ Carmeli, S.; Paik, S.; Moore, R. E.; Patterson, G. M. L.; Yoshida,
 W. Y. *Tetrahedron Lett.* **1993**, *34*, 6680–6684.

^{(3) (}a) Parsons, R. L.; Heathcock, C. H. *Tetrahedron Lett.* **1994**, *35*, 1379–1382. (b) Parsons, R. L.; Heathcock, C. H. *Tetrahedron Lett.* **1994**, *35*, 1383–1384.

^{(4) (}a) Parsons, R. L.; Heathcock, C. H. J. Org. Chem. **1994**, 59, 4733–4734. (b) Boyce, R. L.; Mulqueen, G. C.; Pattenden, G. Tetrahedron Lett. **1994**, 35, 5705–5708.

^{(5) (}a) Groth, U.; Schöllkopf, U. Synthesis **1983**, 37–38. (b) Singh, S.; Rao, S. J.; Pennington, M. W. J. Org. Chem. **2004**, 69, 4551.

^{(6) (}a) Shao, H.; Zhu, Q.; Goodman, M. J. Org. Chem. **1995**, 60, 790–791. (b) Smith, N. D.; Goodman, M. Org. Lett. **2003**, 5, 1035–1037. (c) Fukuyama, T.; Xu, L. J. Am. Chem. Soc. **1993**, 115, 8449–8450.

^{(7) (}a) Walker, M. A.; Heathcock, C. H. J. Org. Chem. **1992**, *57*, 5566–5568. (b) Pattenden G.; Thom, S. M.; Jones, M. F. Tetrahedron **1993**, *49*, 2131–2138. (c) Mulqueen, G. C.; Pattenden, G.; Whiting, D. A. Tetrahedron **1993**, *49*, 5359–5364.

⁽⁸⁾ Kedrowski, B. L. J. Org. Chem. 2003, 68, 5403-5406.

⁽⁹⁾ Park, H.-g.; Lee, J.; Kang, M. J.; Lee, Y.-J.; Jeong, B.-S.; Lee, J.-H.; Yoo, M.-S.; Kim, M.-J.; Choi, S.-h.; Jew, S.-s. *Tetrahedron* **2004**, *60*, 4243.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathsf{H}\mathsf{H}\mathsf{I}\mathsf{C}\mathsf{I} \\ \bullet \mathsf{O}\mathsf{M}\mathsf{e} \end{array} + \\ \begin{array}{c} \mathsf{H}_2\mathsf{N} \\ \mathsf{S}\mathsf{H} \\ 10 \end{array} & \begin{array}{c} \mathsf{Et}_3\mathsf{N}, \mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{I}_2 \\ \mathsf{reflux}, 89\% \end{array} & \begin{array}{c} \bullet \mathsf{F}_3\mathsf{N} \\ \bullet \mathsf{S}\mathsf{N} \\ 10 \end{array} & \begin{array}{c} \mathsf{I}\mathsf{1} \\ \mathsf{I}\mathsf{I} \end{array} & \begin{array}{c} \mathsf{I}\mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \\ \mathsf{I} \end{array} & \begin{array}{c} \mathsf{I} \end{array} & \begin{array}{$

alkylation of **8a** was performed using 1 mol % of the catalyst 1 along with alkyl halides (5.0 equiv) and solid KOH (5.0 equiv) in toluene at 0 °C for 30-45 min.

As shown in Table 1, very high enantioselectivities (84– >99% ee) were observed, except with hexyl iodide (entry *a*, 67% ee). However, the chemical yields varied, depending on the reactivity of the alkyl halides. All of the benzyl halides gave high chemical yields (entry e-i; 90~>99%), but the allylic halides and propargylic halide gave modest chemical yields (entry b-d; 67–>68%). In the case of the aliphatic halide, an even lower chemical yield was observed (entry *a*; 42%). Notably, the reaction rates were 10 times faster than those of the alkylation of the oxazoline substrate 3, even in the presence of a reduced amount of the catalyst 1 (1 mol %), instead of the 2.5 mol % of 1 used in the alkylation of the phenyloxazoline substrate 3. In the case of the 2-biphenylthiazoline substrate 8b, the alkylations were performed using 10 mol % of the catalyst 2 along with 8b, alkyl halide (5.0 equiv), and solid CsOH (5.0 equiv) in dichloromethane at 0 °C for 40–120 min.

As shown in Table 2, high enantioselectivities were observed, but they were slightly less than those of substrate **8a**. Most of the activated alkyl halides showed high chemical yields at 0 °C, but no alkylation product was observed with the aliphatic halides. Relatively lower chemical yields, but comparable enantioselectivities, were observed at -40 °C (data not shown). The reaction rates were 10 times faster than those of the alkylation of the oxazoline substrate **5**, in agreement with the alkylation of substrate **8b**. The hydrolysis of **9a**-*e* (>99% ee) and **9b**-*d* (84% ee) with 6 N HCl afforded (*R*)-(+)-benzylcysteine (98%) and (*S*)-(-)-benzylcysteine (97%), respectively.

In conclusion, we developed efficient enantioselective synthetic methodologies for (R)- α -alkylcysteines and (S)- α -alkylcysteines by the phase-transfer catalytic alkylation of 2-phenyl-

TABLE 1.	Enantioselective	Phase-Transfer	Catalytic	Alkylation
----------	------------------	-----------------------	-----------	------------

\bigcirc	-≪C ^{CO2^tBu-}	1 (1 mol%), RX (5 eq.) KOH (5 eq.), PhMe, 0 °C		N→CO ₂ ^t Bu
	8a			9a
entry	RX	time (min)	yield ^a (%)	% ee^{b} (config.)
a		40	42	67 (<i>R</i>)
b	<i>I</i> → Br	30	68	96 (<i>R</i>)
с	Br	30	67	99 (<i>R</i>)
d	Br	35	67	97 (<i>R</i>)
е	Br	40	90	>99 $(R)^{c}$
f	NC	45	>99	98 (<i>R</i>)
g	F	35	99	84 (<i>R</i>)
h	H ₃ C Br	35	99	96 (<i>R</i>)
i	Br	40	99	99 (<i>R</i>)

^{*a*} Isolated yields. ^{*b*} The enantiopurity was determined by HPLC analysis of the corresponding methyl esters (**9a**') prepared from **9a** using a chiral column (Chiralcel AD or OD) with hexanes/2-propanol as eluents. ^{*c*} The absolute configuration was assigned by the comparison of the specific optical rotation value of the α -benzylcysteine prepared by the acidic hydrolysis of **9a**-*e* with the literature value.^{7b}

2-thiazoline-4-carboxylic acid *tert*-butyl ester (**8a**) and 2-obiphenyl-2-thiazoline-4-carboxylic acid *tert*-butyl ester (**8b**), respectively. The easy preparation of the substrate, the high enantioselectivity, and the very mild reaction conditions could make this method quite practical for industrial processes involving chiral α -alkylcysteines.

Experimental Section

General Procedure for the Enantioselective Alkylation of 2-Phenyl-2-thiazoline-4-carboxylic Acid *tert*-Butyl Ester (8a) or 2-Biphenyl-2-yl-4,5-dihydrothiazole-4-carboxylic Acid *tert*-Butyl Ester (8b) under Phase-Transfer Conditions (Benzylation). To a toluene (1.0 mL) solution of 2-phenyl-2-thiazoline-4-carboxylic acid *tert*-butyl ester (8a, 50.0 mg, 0.2 mmol) were added the chiral catalyst 1 (1.8 mg, 0.002 mmol), KOH (56.1 mg, 1.0 mmol), and benzyl bromide (0.1 mL, 1.0 mmol) at 0 °C, and the reaction mixture was stirred for 40 min. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (20 mL), washed with brine (2 × 5 mL), dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column

TABLE 2. Enantioselective Phase-Transfer Catalytic Alkylation

^{*a*} Isolated yields. ^{*b*} The enantiopurity was determined by HPLC analysis of **9b** using a chiral column (Chiralcel AD) with hexanes/2-propanol as eluents. ^{*c*} The absolute configuration was assigned by the comparison of the specific optical rotation value of the α -benzylcysteine prepared by the acidic hydrolysis of **9b**-*d* with the literature value.^{7b}

chromatography (silica gel, hexanes/EtOAc = 50:1) to afford **9a**-*e* (63.7 mg, 90% yield) as a pale yellow oil. Because the two enantiomers of **9a**-*e* were not fully separated by chiral HPLC, the enantioselectivity was determined by the chiral HPLC analysis of the corresponding methyl ester, prepared from the hydrolysis of **9a**-*e* followed by methylation using the excess of diazomethane. The enantioselectivity was determined as >99% ee [chiral HPLC analysis (Chiralcel AD-H, hexanes:2-propanol = 99:1), flow rate = 1.0 mL/min, 23 °C, = 254 nm, retention time, *S* (minor) 12.3 min, *R* (major) 15.5 min, >99% ee]. Absolute configuration was determined by the comparison of the optical rotation of α -benzyl-cysteine prepared from the acidic hydrolysis of **9a**-*e* with the reported value.^{7b}

Acknowledgment. This work was supported by a grant (10541) from the Seoul R&BD Program.

Supporting Information Available: Representative experimental procedures as well as spectroscopic characterizations of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO061107T